
Existence and Uniqueness of Solutions for Nonlinear Fractional Integro-Differential Equations with Nonlocal Boundary Conditions
Author(s) -
M.J. Mardanov,
Y.A. Sharifov,
Humbet Aliyev Aliyev
Publication year - 2022
Publication title -
european journal of pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.245
H-Index - 5
ISSN - 1307-5543
DOI - 10.29020/nybg.ejpam.v15i2.4366
Subject(s) - mathematics , uniqueness , mathematical analysis , contraction mapping , fixed point theorem , nonlinear system , picard–lindelöf theorem , boundary value problem , contraction principle , differential equation , contraction (grammar) , medicine , physics , quantum mechanics
In this paper, the existence and uniqueness of solutions of fractional integro-differential equations with nonlocal boundary conditions is investigated. We establish the existence of solution via Krasnoselskii fixed point theorem; however, the uniqueness results are obtained by applying the contraction mapping principle.