
On Multi Poly-Genocchi Polynomials with Parameters a, b and c
Author(s) -
Roberto B. Corcino,
Mark P. Laurente,
Mary Ann Ritzell P. Vega
Publication year - 2020
Publication title -
european journal of pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.245
H-Index - 5
ISSN - 1307-5543
DOI - 10.29020/nybg.ejpam.v13i3.3676
Subject(s) - mathematics , difference polynomials , discrete orthogonal polynomials , polylogarithm , orthogonal polynomials , pure mathematics , classical orthogonal polynomials , wilson polynomials , macdonald polynomials , gegenbauer polynomials , algebra over a field , combinatorics , riemann zeta function , prime zeta function , arithmetic zeta function
Most identities of Genocchi numbers and polynomials are related to the well-known Benoulli and Euler polynomials. In this paper, multi poly-Genocchi polynomials with parameters a, b and c are defined by means of multiple parameters polylogarithm. Several properties of these polynomials are established including some recurrence relations and explicit formulas.