Open Access
Reduction of modern problems of mathematics to the classical Riemann-Poincare-Hilbert problem
Author(s) -
Asset Durmagambetov
Publication year - 2018
Publication title -
european journal of pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.245
H-Index - 5
ISSN - 1307-5543
DOI - 10.29020/nybg.ejpam.v11i4.3328
Subject(s) - mathematics , riemann zeta function , mathematical analysis , boundary value problem , riemann–hilbert problem , riemann hypothesis , initial value problem
Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincar\'e--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincar\'e--Riemann--Hilbert boundary-value problem. This allows us to go on to study the potential in the Schr\"odinger equation, which we consider as a velocity component in the Navier--Stokes equation. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincar\'e--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well.