z-logo
open-access-imgOpen Access
Accuracy of Soft Tissue Balancing in Robotic-Assisted Measured-Resection TKA Using a Robotic Distraction Tool
Author(s) -
Jan Koenig,
Sami Shalhoub,
Eric Chen,
Christopher Plaskos
Publication year - 2019
Publication title -
epic series in health sciences
Language(s) - English
Resource type - Conference proceedings
ISSN - 2398-5305
DOI - 10.29007/h8kn
Subject(s) - medicine , soft tissue , range of motion , cohort , coronal plane , surgery , knee joint , orthodontics , biomedical engineering , anatomy
Achieving proper soft tissue balance during total knee arthroplasty (TKA) can reduce post- operative instability and stiffness as well as improve patient reported outcomes. The objective of this study was to compare final intra-operative coronal balance throughout the knee range of motion in navigated robotic-assisted TKA when performed with quantifiable feedback from a robotic ligament tensioning tool versus with standard trials and navigation measurements alone. The study included a prospective cohort of 52 patients undergoing robotic-assisted TKA using a measured resection technique. The cohort was divided into two sequential groups: a non-sensor-assisted group (n=25) and a subsequent sensor-assisted group (n=27). Once bony cuts and soft tissue balancing was performed in the non-sensor cohort, the final tibiofemoral gaps were measured throughout the knee range of motion using a robotic-assisted tensioner with the surgeon blinded to the measurements. For the sensor cohort, the surgeon preformed soft-tissue releases or re-cuts in order to balance the knee using the gap measurement data from the robotic tensioner. The robotic-assisted tensioner was then used to measure the final medial and lateral gap measurements. The average mediolateral gap difference throughout the range of flexion was 1.9 ± 0.7 mm with maximum difference of 7.8 mm for the non-sensor cohort. The sensor cohort had an average mediolateral difference of 1.5 ± 0.6 mm and a maximum difference of 3.8 mm. The difference between the two groups was statistically significant from 60 to 90 degrees of flexion. 38-41% of knees were balanced to within 1 mm mediolaterally in the non-sensor group compared to 48-70% for the sensor group when measured at various flexion angles. 65-76% of knees were balanced to within 2 mm for the non-sensor group compared to 78-86% for the sensor-assisted group. The number of knees requiring subsequent soft tissue releases was similar in each group. Soft tissue balancing with the aid of a robotic tensioning tool resulted in significantly more accurate soft tissue balance than when using navigation measurements and standard trials alone in this single surgeon study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here