
ON EVALUATION OF THE ROLE OF THERMAL AND WIND FACTORS FOR A PHYSICAL MODEL OF THE WORLD OCEAN GENERAL CIRCULATION SYSTEM
Author(s) -
В. Г. Нейман
Publication year - 2019
Publication title -
okeanologičeskie issledovaniâ
Language(s) - English
Resource type - Journals
eISSN - 2587-9634
pISSN - 1564-2291
DOI - 10.29006/1564-2291.jor-2019.47(3).7
Subject(s) - circulation (fluid dynamics) , ocean current , work (physics) , scale (ratio) , mechanism (biology) , meteorology , conceptual model , geology , environmental science , climatology , mechanics , geography , epistemology , engineering , physics , mechanical engineering , philosophy , cartography
The main content of the work consists of certain systematization and addition of longexisting, but eventually deformed and partly lost qualitative ideas about the role of thermal and wind factors that determine the physical mechanism of the World Ocean’s General Circulation System (OGCS). It is noted that the conceptual foundations of the theory of the OGCS in one form or another are contained in the works of many well-known hydrophysicists of the last century, but the aggregate, logically coherent description of the key factors determining the physical model of the OGCS in the public literature is not so easy to find. An attempt is made to clarify and concretize some general ideas about the two key blocks that form the basis of an adequate physical model of the system of oceanic water masses motion in a climatic scale. Attention is drawn to the fact that when analyzing the OGCS it is necessary to take into account not only immediate but also indirect effects of thermal and wind factors on the ocean surface. In conclusion, it is noted that, in the end, by the uneven flow of heat to the surface of the ocean can be explained the nature of both external and almost all internal factors, in one way or another contributing to the excitation of the general, or climatic, ocean circulation.