z-logo
open-access-imgOpen Access
Klasifikasi American Sign Language Menggunakan Ekstraksi Fitur Histogram of Oriented Gradients dan Jaringan Syaraf Tiruan
Author(s) -
Muhammad Ezar Al Rivan,
Mochammad Trinanda Noviardy
Publication year - 2020
Publication title -
jutisi (jurnal teknik informatika dan sistem informasi)
Language(s) - English
Resource type - Journals
ISSN - 2443-2229
DOI - 10.28932/jutisi.v6i3.2844
Subject(s) - histogram , computer science , artificial intelligence , pattern recognition (psychology) , american sign language , artificial neural network , feature (linguistics) , sign (mathematics) , network architecture , histogram of oriented gradients , layer (electronics) , sign language , speech recognition , mathematics , image (mathematics) , linguistics , mathematical analysis , philosophy , chemistry , computer security , organic chemistry
Sign languages have various types, one of which is American Sign Language (ASL). In this study, ASL images from the handshape alphabet were extracted using Histogram of Oriented Gradient (HOG) then these features were used for the classification of Artificial Neural Networks (ANN) with various training functions using 3 variations of multi-layer network architecture where ANN architecture consists of one hidden layer. Based on ANN training, trainbr test results have a higher success rate than other training functions. In architecture with 15 neurons in the hidden layer get an accuracy value of 99.29%, a precision of 91.84%, and a recall of 91.47%. The test results show that using the HOG feature and ANN classification method for ASL recognition gives a good level of accuracy, with an overall accuracy of 5 neurons 95.38%, 10 neurons 96.64%, and 15 neurons with 97.32%.   Keywords— Artificial Neural Network; American Sign Language; Histogram of Oriented Gradient; Training Function

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here