z-logo
open-access-imgOpen Access
Performance of robust count regression estimators in the case of overdispersion, zero inflated, and outliers: simulation study and application to German health data
Author(s) -
Mohamed R. Abonazel,
Sayed Meshaal El-sayed,
Omnia Mohamed Saber
Publication year - 2021
Publication title -
communications in mathematical biology and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.189
H-Index - 7
ISSN - 2052-2541
DOI - 10.28919/cmbn/5658
Subject(s) - overdispersion , estimator , negative binomial distribution , statistics , outlier , mathematics , count data , poisson distribution , quasi likelihood , poisson regression , quantile regression , regression analysis , robust regression , m estimator , robust statistics , econometrics , population , medicine , environmental health

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom