z-logo
open-access-imgOpen Access
ДОСЛІДЖЕННЯ МЕТОДІВ ВИЯВЛЕННЯ АНОМАЛІЙ НА ЕТАПІ ПОПЕРЕДНЬОЇ ОБРОБКИ ДАНИХ
Author(s) -
S. Gavrylenko,
Vladislav Zozulia
Publication year - 2022
Publication title -
sistemi upravlìnnâ, navìgacìï ta zvʼâzku
Language(s) - Ukrainian
Resource type - Journals
ISSN - 2073-7394
DOI - 10.26906/sunz.2022.1.052
Subject(s) - local outlier factor , preprocessor , outlier , anomaly detection , computer science , artificial intelligence , anomaly (physics) , data pre processing , pattern recognition (psychology) , standard deviation , data mining , statistics , mathematics , physics , condensed matter physics
Предметом дослідження є методи та засоби виявлення аномалій в даних. Метою статті є підвищення якості класифікації даних за рахунок виявлення аномалій на етапі їх попередньої обробки. Завдання: дослідити методи виявлення аномалій на етапі попередньої обробки даних, визначити поріг прийняття рішень anomaly_score для кожного із методів та оцінити якість класифікації до та після preprocessing. Використовуваними методами є: методи штучного інтелекту, машинного навчання, ансамблеві методи. Отримано такі результати: досліджено методи виявлення аномалій: метод стандартного відхилення (Standard Deviation Method), метод локального рівня викидів (Local Outlier Factor), метод Ізолюючого лісу (Isolation Forest). Отримано залежність кількості аномалій від порогу прийняття рішень для кожного із методів. Оцінку якості попередньої обробки даних виконано з використанням класифікаторів на основі методів KNN та беггінгу (Bagging). Досліджені методи реалізовані програмно з використанням хмарного сервісу GOOGLE COLAB на основі Jupyter Notebook. Висновки. Наукова новизна отриманих результатів полягає у дослідженні методів виявлення аномалій на етапі попередньої обробки даних, вибору мета-алгоритму preprocessing та визначення оптимальних параметрів його налаштування.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here