
МЕТОДИ ЗБЕРІГАННЯ ДАНИХ РЕКОМЕНДАЦІЙНОЇ СИСТЕМИ НА ОСНОВІ ЗВ’ЯЗНИХ СПИСКІВ
Author(s) -
V. Mikhav,
Ye. Meleshko,
M. Yakymenko,
D. Bashchenko
Publication year - 2021
Publication title -
sistemi upravlìnnâ, navìgacìï ta zvʼâzku
Language(s) - Ukrainian
Resource type - Journals
ISSN - 2073-7394
DOI - 10.26906/sunz.2021.4.059
Subject(s) - materials science
Метою даної роботи є дослідження та порівняльний аналіз методів і структур даних для зберігання інформації рекомендаційної системи, щоб порівняти ефективність їх використання за затратами часу та пам’яті. Вибір методу представлення даних, якими оперує рекомендаційна система, має важливе значення, оскільки ефективний спосіб побудови бази даних для роботи такої системи може зменшити кількість потрібних ресурсів та збільшити кількість доступних алгоритмів для формування списків рекомендацій, а також є важливим з точки зору якості її роботи, швидкості, можливостей масштабування та зручності виконання основних операцій з даними для формування рекомендацій. Наявність великої кількості різних методів реалізації баз даних та представлення інформації, що можна використати при побудові рекомендаційних систем, викликає необхідність порівняльного аналізу та вибору оптимального методу і структури даних для зберігання інформації в них. У роботі було проведено дослідження різних структур даних, які можна використати для зберігання інформації рекомендаційної системи. Зокрема, таких як зв’язний список, розгорнутий зв’язний список, хеш-таблиця, B-дерево, В+-дерево та бінарна діаграма рішень. Для проведення експериментів з порівняння ефективності застосування різних структур даних за затратами часу та пам’яті було розроблено програмну модель спрощеної рекомендаційної системи, в якій було виділено три основні сутності – агент, сесія та предмет. Найкращі результати показали методи зберігання даних з використанням розгорнутого та інвертованого розгорнутого з’язних списків. Тому було вирішено також провести додаткову серію експериментів з цими структурами даних для різного розміру блоку списку. Розгорнутий список показав кращі результати за використовуваною пам’яттю та за часом генерації сесій. Інвертований розгорнутий список показав перевагу за часом генерації рекомендацій