
ДОПОВНЕННЯ ВХІДНИХ ДАНИХ РЕКОМЕНДАЦІЙНОЇ СИСТЕМИ В СИТУАЦІЇ ЦИКЛІЧНОГО ХОЛОДНОГО СТАРТУ З ВИКОРИСТАННЯМ ТЕМПОРАЛЬНИХ ОБМЕЖЕНЬ ТИПУ «NEXT»
Author(s) -
S. Chalyi,
V. Leshchynskyi,
Irina Leshchynska
Publication year - 2019
Publication title -
sistemi upravlìnnâ, navìgacìï ta zvʼâzku
Language(s) - Ukrainian
Resource type - Journals
ISSN - 2073-7394
DOI - 10.26906/sunz.2019.4.105
Subject(s) - computer science
Предметом вивчення в статті є процеси формування рекомендованого списку товарів та послуг в ситуації циклічного холодного старту рекомендаційної системи. Така ситуація характеризується циклічною зміною інтересів користувачів, що потребує уточнення вхідних даних для побудови рекомендацій. Метою є розробка методу доповнення вхідних даних для побудови рекомендацій непостійним користувачам, що змінюють свої вимоги, з використанням темпоральних обмежень типу «Next». Завдання: виділити базові особливості темпоральних залежностей в рекомендаційних системах; розробити концепцію коригування вхідних даних у ситуації циклічного холодного старту; розробити метод доповнення вхідних даних на основі темпоральних обмежень типу «Next». Отримані наступні результати. Виконано структуризацію темпоральних залежностей з урахуванням особливості їх застосування в рекомендаційних системах. Показано, що для опису поведінки користувача в таких системах можна використовувати залежності типу «Next» між послідовним у часі вибором одного й того ж об’єкту, а також залежності типу «Future» з проміжним вибором інших товарів або послуг. Запропоновано концептуальний підхід до уточнення вхідних даних на основі темпоральних залежностей. В рамках представленого концептуального підходу запропоновано метод доповнення вхідних даних рекомендаційної системи на основі формування темпоральних обмежень типу «Next». Висновки. Наукова новизна отриманих результатів полягає в наступному. Запропоновано метод доповнення вхідних даних рекомендаційної системи в ситуації циклічного холодного старту з використанням темпоральних обмежень типу «Next». Метод містить етапи узагальнення вхідних даних, формування темпоральних обмежень типу «Next», а також доповнення вхідних даних згідно отриманих обмежень. Запропонований метод дозволяє підвищити ефективність побудови рекомендацій для непостійних користувачів на основі формування обмежень, що відображають обов’язкові зміни інтересів відомих користувачів.