
МЕТОД ТЕМАТИЧНОГО СЕГМЕНТУВАННЯ КОЛЬОРОВОГО ЗОБРАЖЕННЯ БОРТОВОЇ СИСТЕМИ ОПТИКО-ЕЛЕКТРОННОГО СПОСТЕРЕЖЕННЯ
Author(s) -
I. Khizhnyak,
H. Khudov,
I. Ruban,
A. Makoveychuk,
Yu. Solomonenko,
V. Khudov
Publication year - 2018
Publication title -
sistemi upravlìnnâ, navìgacìï ta zvʼâzku
Language(s) - Ukrainian
Resource type - Journals
ISSN - 2073-7394
DOI - 10.26906/sunz.2018.5.013
Subject(s) - chemistry
Предметом вивчення в статті є метод тематичного сегментування кольорового зображення бортової системи оптико-електронного спостереження. Метою є розробка методу тематичного сегментування, в основу якого покладений ройовий метод штучної бджолиної колонії. Завдання: аналіз властивостей метаевристичних методів оптимізації, аналіз основних операцій метаевристичних методів оптимізації, формулювання оптимізаційної задачі вибору порогу тематичного сегментування оптико-електронного зображення при використанні ройового методу штучної бджолиної колонії, розробка схеми методу тематичного сегментування оптико-електронних зображень бортових систем оптико-електронного спостереження, отримання гістограм розподілу яскравості по кожному каналу яскравості кольорового зображення, викладення сутності методу тематичного сегментування кольорового зображення бортової системи оптико-електронного спостереження, аналіз ітераційного процесу пошуку оптимальних порогів тематичного сегментування в кольорових каналах оптико-електронного зображення, визначення оптимального значення порогового рівня для кожного каналу яскравості, отримання результату тематичного сегментування вихідного оптико-електронного зображення, візуальна оцінки якості сегментованого зображення. Використовуваними методами є: методи теорії імовірності, математичної статистики, ройового інтелекту, кластерізації даних, еволюційних обчислень, методи оптимізації, математичного моделювання та цифрової обробки зображень. Отримані такі результати. Встановлено, що для тематичного сегментування зображення бортової системи оптико-електронного спостереження доцільно використання метаевристичних методів оптимізації. Встановлено, що метод тематичного сегментування кольорового зображення заснований на ройовому методі штучної бджолиної колонії, у якості цільової функції використовується сума дисперсії тематичних сегментів, а оптимізаційна задача полягає в мінімізації цільової функції. Встановлено, що оптимальне значення порогового рівня для кожного каналу яскравості відповідає мінімуму цільової функції для кожного каналу яскравості. Висновки. Наукова новизна отриманих результатів полягає в наступному: підвищення візуальної якості сегментованого кольорового зображення, що в подальшому суттєво впливає на вирішення завдання дешифрування зображення.