
ТОЧНІ РОЗВ’ЯЗКИ НЕЛІНІЙНОГО (1+2)-ВИМІРНОГО РІВНЯННЯ РЕАКЦІЇ-КОНВЕКЦІЇ-ДИФУЗІЇ
Author(s) -
Yu. V. Prystavka
Publication year - 2018
Publication title -
sistemi upravlìnnâ, navìgacìï ta zvʼâzku
Language(s) - Ukrainian
Resource type - Journals
ISSN - 2073-7394
DOI - 10.26906/sunz.2018.3.078
Subject(s) - chemistry
Предметом вивчення в статті є застосування ліївського методу до побудови інваріантних анзаців, редукції та знаходження точних розв’язків (1+2)-вимірного рівняння реакції-конвекції-дифузії. Мета - здійснити побудову точних розв’язків (1+2)-вимірного рівняння реакції-конвекції-дифузії на основі використання симетричних властивостей цього рівняння. Задача − використати ліївську симетрію рівняння (1+2)-вимірного рівняння реакції-конвекціїдифузії для побудови інваріантних анзаців, редукції та знаходження його точних розв’язків. Для реалізації цієї задачі використано метод Софуса Лі, в основі його лежить принцип симетрії. Згідно з методом С. Лі диференціальні рівняння з частинними похідними, які володіють класичною лііївською симетрією, можна редукувати до звичайних диференціальних рівнянь за допомогою спеціальних підстановок(анзаців). Розв’язавши редуковані рівняння, можна побудувати точні розв’язки вихідного диференціального рівняння з частинними похідними. Висновки: використано симетрійні властивості (1+2)-вимірного рівняння реакції-конвекції-дифузії для побудови інваріантних анзаців, редукції та знаходження його точних розв’язків.