z-logo
open-access-imgOpen Access
ІНФОРМАЦІЙНА РОЙОВА ТЕХНОЛОГІЯ ТЕМАТИЧНОГО СЕГМЕНТУВАННЯ ЗОБРАЖЕНЬ, ЩО ОТРИМАНІ З БОРТОВИХ СИСТЕМ ОПТИКО-ЕЛЕКТРОННОГО СПОСТЕРЕЖЕННЯ
Author(s) -
Irina Khizhnyak,
A. Makoveychuk,
Hennadii Khudov
Publication year - 2018
Publication title -
sistemi upravlìnnâ, navìgacìï ta zvʼâzku
Language(s) - Ukrainian
Resource type - Journals
ISSN - 2073-7394
DOI - 10.26906/sunz.2018.3.026
Subject(s) - medicine
Предметом вивчення в статті є інформаційні ройова технологія тематичного сегментування зображень, що отримані з бортових систем оптико-електронного спостереження. Метою є розробка інформаційної технології сегментування, в основу якої покладений ройовий метод тематичного сегментування оптико-електронного зображення. Завдання: аналіз рівнів технології дешифрування оптико-електронного зображення, аналіз основних етапів обробки оптико-електронного зображення та рівнів локалізації об’єктів інтересу на етапі розпізнавання, аналіз основних вимог до тематичних сегментів зображення, аналіз відомих методів та інформаційних технологій сегментування зображень, що отримані з бортових систем спостереження, обґрунтування цільової функції тематичного сегментування та вибору оптимального значення порогу сегментування, розробка інформаційної ройової технології тематичного сегментування зображень, що отримані з бортової системи оптико-електронного спостереження, наведення тестового прикладу тематичного сегментування кольорового зображення. Використовуваними методами є: методи теорії імовірності, математичної статистики, ройового інтелекту, кластерізації даних, еволюційних обчислень, методи оптимізації, математичного моделювання та цифрової обробки зображень. Отримані такі результати. Встановлено, що основним етапом обробки зображень, що отримані з бортових систем спостереження, є етап тематичного сегментування. Встановлено, що у теперішній час невелика кількість досліджень присвячена вирішенню задачі тематичного сегментування зображень, що отримані з бортових систем спостереження. Встановлено, що у якості цільової функції використовується функція, яка визначається як сума дисперсії інтенсивності пікселів в межах кожного тематичного сегменту, а оптимізація полягає у мінімізації цільової функції. В основу інформаційної ройової технології покладені удосконалені методи ройового інтелекту (штучної бджолиної колонії) тематичного сегментування оптико-електронного зображення та ройового інтелекту (штучної бджолиної колонії) тематичного сегментування багатомасштабної послідовності оптико-електронних зображень. Висновки. Наукова новизна отриманих результатів полягає в наступному: підвищення візуальної якості сегментованого зображення, що в подальшому суттєво впливає на вирішення завдання дешифрування зображення.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here