z-logo
open-access-imgOpen Access
AVALIAÇÃO DA ACURÁCIA DE ALGORITMOS DE CLASSIFICAÇÃO DE IMAGENS ORBITAIS NA BAÍA DA BABITONGA, NORDESTE DE SANTA CATARINA
Author(s) -
Celso Vôos Vieira,
Pedro Apolonid Viana
Publication year - 2021
Publication title -
revista brasileira de geografia física
Language(s) - English
Resource type - Journals
ISSN - 1984-2295
DOI - 10.26848/rbgf.v14.6.p3599-3613
Subject(s) - land cover , thematic mapper , mathematics , mahalanobis distance , stellar classification , physics , cartography , multispectral pattern recognition , multispectral image , forestry , remote sensing , artificial intelligence , geography , computer science , statistics , spectral line , land use , satellite imagery , civil engineering , astronomy , engineering
O objetivo deste trabalho foi a avaliação da acurácia de algoritmos de classificação do uso e cobertura do solo, quando aplicados a uma imagem orbital de média resolução espacial. Para esse estudo foram utilizadas as bandas espectrais da faixa do visível e infravermelho próximo, do sensor Operational Land Imager – OLI na Baía da Babitonga/SC. Foram propostas nove classes de cobertura do solo, que serviram como controle para testar 11 algoritmos classificadores: Binary Encoding, Example Based Feature Extraction, IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Neural Net, Parallelepiped, Spectral Angle Mapper e Spectral Information Divergence. O classificador Maximum Likelihood foi o que apresentou o melhor desempenho, obtendo um índice Kappa de 0,89 e acurácia global de 95,5%, sendo capaz de distinguir as nove classes de cobertura do solo propostas. Evaluation of the Accuracy of Orbital Image Classification Algorithms in Babitonga Bay, northeast of Santa Catarina A B S T R A C TThe objective of this work was to evaluate the classification algorithms accuracy of the soil use and cover when applied to a spatial mean orbital image. For this study we used the visible and near infrared spectral bands of the Operational Land Imager - OLI sensor in Babitonga Bay / SC. Nine classes of soil cover were proposed, which served as control to test 11 classifier algorithms: Binary Encoding, Example Based Feature Extraction, IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Neural Net, Parallelepiped, Spectral Angle Mapper and Spectral Information Divergence. The Maximum Likelihood classifier presented the best performance, obtaining a Kappa index of 0.89 and a global accuracy of 95.5%, being able to distinguish the nine proposed classes of soil cover.Keywords: Algorithms Accuracy, Babitonga Bay, Orbital image, Remote sensing, Soil Use and Cover. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here