
AVALIAÇÃO DA ACURÁCIA DE ALGORITMOS DE CLASSIFICAÇÃO DE IMAGENS ORBITAIS NA BAÍA DA BABITONGA, NORDESTE DE SANTA CATARINA
Author(s) -
Celso Vôos Vieira,
Pedro Apolonid Viana
Publication year - 2021
Publication title -
revista brasileira de geografia física
Language(s) - English
Resource type - Journals
ISSN - 1984-2295
DOI - 10.26848/rbgf.v14.6.p3599-3613
Subject(s) - land cover , thematic mapper , mathematics , mahalanobis distance , stellar classification , physics , cartography , multispectral pattern recognition , multispectral image , forestry , remote sensing , artificial intelligence , geography , computer science , statistics , spectral line , land use , satellite imagery , civil engineering , astronomy , engineering
O objetivo deste trabalho foi a avaliação da acurácia de algoritmos de classificação do uso e cobertura do solo, quando aplicados a uma imagem orbital de média resolução espacial. Para esse estudo foram utilizadas as bandas espectrais da faixa do visível e infravermelho próximo, do sensor Operational Land Imager – OLI na Baía da Babitonga/SC. Foram propostas nove classes de cobertura do solo, que serviram como controle para testar 11 algoritmos classificadores: Binary Encoding, Example Based Feature Extraction, IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Neural Net, Parallelepiped, Spectral Angle Mapper e Spectral Information Divergence. O classificador Maximum Likelihood foi o que apresentou o melhor desempenho, obtendo um índice Kappa de 0,89 e acurácia global de 95,5%, sendo capaz de distinguir as nove classes de cobertura do solo propostas. Evaluation of the Accuracy of Orbital Image Classification Algorithms in Babitonga Bay, northeast of Santa Catarina A B S T R A C TThe objective of this work was to evaluate the classification algorithms accuracy of the soil use and cover when applied to a spatial mean orbital image. For this study we used the visible and near infrared spectral bands of the Operational Land Imager - OLI sensor in Babitonga Bay / SC. Nine classes of soil cover were proposed, which served as control to test 11 classifier algorithms: Binary Encoding, Example Based Feature Extraction, IsoData, K-Means, Mahalanobis Distance, Maximum Likelihood, Minimum Distance, Neural Net, Parallelepiped, Spectral Angle Mapper and Spectral Information Divergence. The Maximum Likelihood classifier presented the best performance, obtaining a Kappa index of 0.89 and a global accuracy of 95.5%, being able to distinguish the nine proposed classes of soil cover.Keywords: Algorithms Accuracy, Babitonga Bay, Orbital image, Remote sensing, Soil Use and Cover.