
Identificação das Dunas do Atacama (Norte do Chile) a partir da avaliação de três algoritmos no Google Earth Engine
Author(s) -
Leonel Enrique Sánchez,
Joselisa Maria Chaves,
Washington J.S. Franca Rocha,
Jocimara Souza Britto Lobão,
Plínio Martins Falcão
Publication year - 2021
Publication title -
revista brasileira de geografia física
Language(s) - English
Resource type - Journals
ISSN - 1984-2295
DOI - 10.26848/rbgf.v14.6.p3294-3315
Subject(s) - geology , geomorphology
As dunas correspondem a processos de sedimentação eólica, que podem estar tanto nas áreas costeiras marinhas, como no interior do continente com algumas diferenças na modelagem. No Sul do deserto do Atacama, no Norte do Chile, há um conjunto de seis campos de dunas intermontanhas chamadas Mar de Dunas do Atacama, as quais têm tipologias complexas de dunas do deserto, que podem ser ativas, semiativas ou estabilizadas. O seu monitoramento é conveniente para conhecer detalhes sobre a possível invasão de areias das dunas ao sul do rio Copiapó. Dessa forma, esta pesquisa tem como objetivo avaliar os métodos de classificação supervisionada Random Forest, CART e SmileCART através de duas metodologias de amostragens, aleatória e estratificada, numa imagem Landsat 5 na plataforma em nuvem Google Earth Engine, a fim de verificar qual método oferece o melhor resultado para o mapeamento do Mar de Dunas do Atacama. Para conseguir este objetivo, foram criados polígonos de classes para a realização da amostragem aleatória estratificada e chave de interpretação para amostragem aleatória simples. O processo de avaliação da acurácia foi feito através de imagem Sentinel 2 com a aplicação dos índices de Simultaneidade Geográfica, Erros de Comissão e Omissão, e Exatidão Global. Observou-se como resultados para os algoritmos testados, que os três algoritmos foram eficientes para o mapeamento das Dunas do Atacama, entretanto, a técnica de classificação supervisionada por CART, com a metodologia da amostragem aleatória simples, representou o melhor desempenho.Identification of the Atacama Dunes (Northern Chile) from the evaluation of three algorithms on Google Earth EngineA B S T R A C TThe dunes correspond to wind sedimentation processes, which can be found both in marine coastal areas and in the interior of the continent with some differences in modeling. In the south of the Atacama desert, in northern Chile, there are a set of six inter-mountain dune fields called Mar de Dunas do Atacama, which have complex types of desert dunes, which can be active, semi-active or stabilized. Its monitoring is convenient to know details about the possible invasion of sand from the dunes south of the Copiapó River. Thus, this research aims to evaluate the supervised classification methods Random Forest, CART and SmileCART through two sampling methodologies, random and stratified, in a Landsat 5 image on the Google Earth Engine cloud platform, in order to verify which method offers the best result for mapping the Atacama Dunes Sea. In order to achieve this objective, class polygons were created to perform stratified random sampling and the interpretation key for simple random sampling. The accuracy assessment process was performed using a Sentinel 2 image with the application of the Geographic Simultaneity indices and the Commission and Omission Errors. It was observed as results for the tested algorithms, that the three algorithms were efficient for mapping the Atacama Dunes, however, the CART supervised classification technique, with the simple random sampling methodology, represents the best performance.