
CONSTITUTIVE MATERIAL MODEL FOR BLOCK MASONRY AND ITS MECHANICAL PROPERTIES
Author(s) -
Muhammad Junaid Iqbal
Publication year - 2021
Publication title -
journal of mechanics of continua and mathematical sciences
Language(s) - English
Resource type - Journals
eISSN - 2454-7190
pISSN - 0973-8975
DOI - 10.26782/jmcms.2021.04.00005
Subject(s) - masonry , compressive strength , mortar , block (permutation group theory) , materials science , composite material , geotechnical engineering , shear strength (soil) , structural engineering , geology , engineering , mathematics , geometry , soil science , soil water
This research work aims at the development of a material model for concrete block masonry used in the load-bearing wall as well as masonry infill. To accomplish this, various tests were performed on concrete block (solid) units and concrete block masonry assemblage. A concrete block having a size of 12 x 8 x 6 inches, were fabricated in a mortar ratio of 1:4, 1:2:2, 1:8 and 1:4:4. The compressive strength of concrete block prisms having size 24.36 x 8.04 x 18.72 inches, was also determined by conducting the compressive strength test. The shear strength of square prisms, having size 26.76 x 8.04 x 25.20 inches, was found by applying diagonal loading. To investigate the bond shear strength of concrete block masonry, triplet tests were carried out on block masonry prisms. Before conduct, a test on block assemblage specimens, the constituent materials of block assemblage i.e. block and mortar were also tested for different properties. The average compressive strength of concrete block (12”x8”x6”) was 302.25 psi and the average unit weight was 119.83 lb/ft3. The compressive strength of mortars of 1:4, 1:2:2, 1:8 and 1:4:4 was 2367, 1752,815 and 1332 psi respectively.