
Cutting Temperature Investigation of AISI H13 in High Speed End Milling
Author(s) -
Muhammad Riza,
Erry Yulian Triblas Adesta
Publication year - 2016
Publication title -
international journal of engineering materials and manufacture
Language(s) - English
Resource type - Journals
ISSN - 0128-1852
DOI - 10.26776/ijemm.01.01.2016.06
Subject(s) - machining , carbide , materials science , high speed steel , mechanical engineering , point (geometry) , tool path , cutting tool , metallurgy , moment (physics) , engineering , geometry , mathematics , physics , classical mechanics
Heat produced at the tool-chip interface during high speed milling operations have been known as a significant factor that affect to tool life and workpiece geometry or properties. This paper aims to investigate cutting temperature behaviours of AISI H13 (48 HRC) under high speed machining circumstances during pocketing. The experiments were conducted on CNC vertical machining centre by using PVD coated carbide insert. Milling processes were done at cutting speeds 150, 200 and 250 m/min and feed rate were 0.05, 0.1 and 0.15 mm/tooth. Depths of cut applied were 0.1, 0.15 and 0.2 mm. Tool path method applied in this experiment was contour in. Results presented in this paper indicate that by increasing cutting speed the cutting temperature is lower than low cutting speed. However, by decreasing feed rate leads to cutting temperature low. Cutting temperature phenomena at the corner of pocket milling were also investigated. The phenomena showed that cutting temperature tends to decrease a moment when cutter comes to the corner of pocket and turning point of tool path and increase extremely a moment before leaving the corner and turning point.