z-logo
open-access-imgOpen Access
The Threshold of Detection of Fission Materials by ZnWO4 and Bi4Ge3O12 Scintillation Detectors
Author(s) -
G. M. Onyshchenko,
V. D. Ryzhikov,
Ivan Yakymenko,
Oleksandr Shchus
Publication year - 2019
Publication title -
east european journal of physics
Language(s) - English
Resource type - Journals
eISSN - 2312-4539
pISSN - 2312-4334
DOI - 10.26565/2312-4334-2019-4-10
Subject(s) - scintillator , physics , neutron detection , scintillation , detector , neutron , sensitivity (control systems) , fission , scintillation counter , optics , photon , nuclear physics , electronic engineering , engineering
In the present work we found the maximum discovery distance for 239Pu-Be source using the detectors based on ZWO (ZnWO4) and BGO (Bi4Ge3O12) oxide scintillators. Detection distance was defined by using the radiation monitoring system ”PORTAL”. This research gives us data for estimation of the contribution of low-energy cascade gamma quanta CGQ. The CGQ emitted by excited scintillator nuclei defined the effective discovery distance of the fast neutrons source. The maximum detection distance was obtained with PMT in a single-photon counting mode. The maximum discovery distance for a BGO scintillator of size Ø40×40 mm – 38 cm, ZWO scintillator of size Ø52×40 mm – 54 cm, with reliability about 0.001. The results of the experiment on the ZWO scintillator can be explained by the registration of additional gamma quanta from the inelastic scattering reaction and the CGQ arising from resonant neutron capture region. This two mechanisms further lead to increase the sensitivity of the detector and increase the detection distance of the monitoring system. The key features of the monitoring system are: ZWO oxide scintillator, wide band measuring path, utilize PMT in single photon mode. The obtained detection distance was about 1.4 times higher in comparison with the spectrometric recording mode and 1.9 times higher in values of efficiency. Our results demonstrate the advantages of the ZWO scintillator compared to the BGO and demonstrate the possibility of using the resonant capture mechanism by ZWO detector nuclei to increase the fast neutrons sensitivity. The resonance capture mechanism increase sensitivity and maximum detection distance of the monitoring system. The low-energy gamma-quanta, which discharge of compound nuclei, are substantially suppressed in comparison with the classic spectrometric recording mode.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here