z-logo
open-access-imgOpen Access
Partial parabolicity of the boundary-value problem for pseudodifferential equations in a layer
Author(s) -
А. А. Макаров,
I. V. Nikolenko
Publication year - 2019
Publication title -
vìsnik harkìvsʹkogo nacìonalʹnogo unìversitetu ìmenì v.n. karazìna. serìâ: matematika, prikladna matematika ì mehanìka
Language(s) - English
Resource type - Journals
eISSN - 2523-4641
pISSN - 2221-5646
DOI - 10.26565/2221-5646-2019-89-03
Subject(s) - sobolev space , mathematics , smoothness , boundary value problem , parabolic partial differential equation , mathematical analysis , boundary (topology) , pseudodifferential operators , operator (biology) , trace operator , space (punctuation) , value (mathematics) , partial differential equation , mixed boundary condition , elliptic boundary value problem , computer science , statistics , biochemistry , chemistry , repressor , transcription factor , gene , operating system
A nonlocal boundary-value problem for evolutional pseudodifferential equations in an infinite layer is considered in this paper. The notion of the partially parabolic boundary-value problem is introduced when a solving function decreases exponentially only by the part of space variables. This concept generalizes the concept of a parabolic boundary value problem, which was previously studied by one of the authors of this paper (A. A. Makarov). Necessary and sufficient conditions for the pseudodifferential operator symbol are obtained in which partially parabolic boundary-value problems exist. It turned out that the real part of the symbol of a pseudodifferential operator should increase unboundedly powerfully in some of the spatial variables. In this case, a specific type of boundary conditions is indicated, which depend on a pseudodifferential equation and are also pseudodifferential operators. It is shown that for solutions of partially parabolic boundary-value problems, smoothness in some of the spatial variables increases. The disturbed (excitated) pseudodifferential equation with a symbol which depends on space and temporal variables is also investigated. It has been found for partially parabolic boundary-value problems what pseudodifferential operators are possible to be disturbed in the way that the input equation of this boundary-value problem would remain correct in Sobolev-Slobodetsky spaces. It is also shown that although the properties of increasing the smoothness of solutions in part of the variables for partially parabolic boundary value problems are similar to the property of solutions of partially hypoelliptic equations introduced by L. H\"{o}rmander, these examples show that the partial parabolic boundary value problem does not follow from partial hipoellipticity; and vice versa - an example of a partially parabolic boundary value problem for a differential equation that is not partially hypoelliptic is given.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here