z-logo
open-access-imgOpen Access
Post-Stroke identification of EEG signals using recurrent neural networks and long short-term memory
Author(s) -
Wanodya Sansiagi,
Esmeralda C. Djamal,
Daswara Djajasasmita,
Arlisa Wulandari
Publication year - 2021
Publication title -
ijain (international journal of advances in intelligent informatics)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.183
H-Index - 9
eISSN - 2548-3161
pISSN - 2442-6571
DOI - 10.26555/ijain.v7i2.512
Subject(s) - computer science , artificial intelligence , stroke (engine) , wavelet , electroencephalography , feature (linguistics) , pattern recognition (psychology) , rehabilitation , recurrent neural network , gradient descent , stochastic gradient descent , artificial neural network , speech recognition , psychology , medicine , physical therapy , mechanical engineering , linguistics , philosophy , engineering , psychiatry
Stroke often causes disability, so patients need rehabilitation for recovery. Therefore, it is necessary to measure its effectiveness. An Electroencephalogram (EEG) can capture the improvement of activity in the brain in stroke rehabilitation. Therefore, the focus is on the identification of several post-rehabilitation conditions. This paper proposed identifying post-stroke EEG signals using Recurrent Neural Networks (RNN) to process sequential data. Memory control in the use of RNN adopted Long Short-Term Memory. Identification was provided out on two classes based on patient condition, particularly "No Stroke" and "Stroke". EEG signals are filtered using Wavelet to get the waves that characterize a stroke. The four waves and the average amplitude are features of the identification model. The experiment also varied the weight correction, i.e., Adaptive Moment Optimization (Adam) and Stochastic Gradient Descent (SGD). This research showed the highest accuracy using Wavelet without amplitude features of 94.80% for new data with Adam optimization model. Meanwhile, the feature configuration tested effect shows that the use of the amplitude feature slightly reduces the accuracy to 91.38%. The results also show that the effect of the optimization model, namely Adam has a higher accuracy of 94.8% compared to SGD, only 74.14%. The number of hidden layers showed that three hidden layers could slightly increase the accuracy from 93.10% to 94.8%. Therefore, wavelets as extraction are more significant than other configurations, which slightly differ in performance. Adam's model achieved convergence in earlier times, but the speed of each iteration is slower than the SGD model. Experiments also showed that the optimization model, number of epochs, configuration, and duration of the EEG signal provide the best accuracy settings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here