z-logo
open-access-imgOpen Access
Non-local Problems with Integral Displacement for Highorder Parabolic Equations
Author(s) -
А. И. Кожанов,
Alexandra Vladimirovna Dyuzheva
Publication year - 2021
Publication title -
izvestiâ irkutskogo gosudarstvennogo universiteta. seriâ "matematika"/izvestiâ irkutskogo gosudarstvennogo universiteta. seria matematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.411
H-Index - 3
eISSN - 2541-8785
pISSN - 1997-7670
DOI - 10.26516/1997-7670.2021.36.14
Subject(s) - mathematics , integral equation , sobolev space , mathematical analysis , parabolic partial differential equation , partial differential equation , boundary value problem , order (exchange) , variable (mathematics) , homogeneous , finance , economics , combinatorics
The aim of this paper is to study the solvability of solutions of non-local problems with integral conditions in spatial variables for high-order linear parabolic equations in the classes of regular solutions (which have all the squared derivatives generalized by S. L. Sobolev that are included in the corresponding equation) . Previously, similar problems were studied for high-order parabolic equations, either in the one-dimensional case, or when certain conditions of smallness on the coefficients are met equations. In this paper, we present new results on the solvability of non-local problems with integral spatial variables for high-order parabolic equations a) in the multidimensional case with respect to spatial variables; b) in the absence of smallness conditions. The research method is based on the transition from a problem with non-local integral conditions to a problem with classical homogeneous conditions of the first or second kind on the side boundary for a loaded integro-differential equation. At the end of the paper, some generalizations of the obtained results will be described.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here