z-logo
open-access-imgOpen Access
On Periodic Groups Saturated with Finite Frobenius Groups
Author(s) -
B. E. Durakov,
А. И. Созутов
Publication year - 2021
Publication title -
izvestiâ irkutskogo gosudarstvennogo universiteta. seriâ "matematika"/izvestiâ irkutskogo gosudarstvennogo universiteta. seria matematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.411
H-Index - 3
eISSN - 2541-8785
pISSN - 1997-7670
DOI - 10.26516/1997-7670.2021.35.73
Subject(s) - mathematics , combinatorics , finite group , group (periodic table) , complement (music) , quotient , quotient group , conjugate , locally finite group , frobenius group , normal subgroup , cyclic group , physics , mathematical analysis , chemistry , abelian group , biochemistry , quantum mechanics , complementation , gene , phenotype
A group is called weakly conjugate biprimitively finite if each its element of prime order generates a finite subgroup with any of its conjugate elements. A binary finite group is a periodic group in which any two elements generate a finite subgroup. If $\mathfrak{X}$ is some set of finite groups, then the group $G$ saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$, isomorphic to some group from $\mathfrak{X}$. A group $G = F \leftthreetimes H$ is a Frobenius group with kernel $F$ and a complement $H$ if $H \cap H^f = 1$ for all $f \in F^{\#}$ and each element from $G \setminus F$ belongs to a one conjugated to $H$ subgroup of $G$. In the paper we prove that a saturated with finite Frobenius groups periodic weakly conjugate biprimitive finite group with a nontrivial locally finite radical is a Frobenius group. A number of properties of such groups and their quotient groups by a locally finite radical are found. A similar result was obtained for binary finite groups with the indicated conditions. Examples of periodic non locally finite groups with the properties above are given, and a number of questions on combinatorial group theory are raised.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here