
Comparación de técnicas basadas en visión computacional y machine learning para la detección temprana de anemia a partir del análisis de uñas
Author(s) -
Keico Anavela Heredia-Menor,
Wilfredo Mamani-Ticona
Publication year - 2021
Publication title -
actas del congreso internacional de ingeniería de sistemas
Language(s) - Spanish
Resource type - Conference proceedings
ISSN - 2810-806X
DOI - 10.26439/ciis2020.5478
Subject(s) - humanities , medicine , physics , philosophy
En el Perú la anemia es una enfermedad que está presente en más del 40 % de la población, es común tanto en niños como en adolescentes, y predomina en mujeres gestantes y niños menores de dos años, lo que compromete seriamente su desarrollo. Para diagnosti car la anemia es necesario realizar pruebas de laboratorio mediante el análisis de la sangre, donde se determinan los niveles de hemoglobina. Sin embargo, la mayoría de los hospitales no cuentan con los equipos adecuados para realizar las pruebas, lo que ocasiona retrasos en la entrega de los diagnósticos. El objetivo de esta investigación es comparar técnicas basadas en visión computacional y machine learning para la detección temprana de anemia a partir del análisis de uñas, de manera que los doctores puedan utilizarlo como apoyo en la detección de la anemia para un descarte temprano. Con un diagnóstico oportuno, se evitará a los pacientes padecer las diferentes etapas de esta enfermedad y especialmente a los que se encuentran en la etapa crónica cuando las consecuencias son graves, debido a que la anemia puede indicar la presencia de otra enfermedad subyacente. Se realizaron varios experimentos y los mejores resultados fueron: Accuracy 0,989, precision 0,98, recall 0,98 y F1-score de 0,98, con la arqui tectura VGG19 como extractor de características en combinación con el clasificador support vector machines (SVM). Con la investigación se demostró que es posible detectar la anemia, sin necesidad de un análisis de sangre, con mayor rapidez y con resultados confiables.