z-logo
open-access-imgOpen Access
Perbandingan Nilai Akurasi Algoritma Smoothing pada Mesin Penerjemah Statistik Bahasa Indonesia ke Bahasa Melayu Sambas dengan Language Model Toolkit IRSTLM
Author(s) -
Ronja Ronja,
Herry Sujaini,
Rudy Dwi Nyoto
Publication year - 2020
Publication title -
jepin (jurnal edukasi dan penelitian informatika)
Language(s) - English
Resource type - Journals
eISSN - 2548-9364
pISSN - 2460-0741
DOI - 10.26418/jp.v6i3.42471
Subject(s) - smoothing , speech recognition , computer science , natural language processing , artificial intelligence , arithmetic , mathematics , statistics
Komunikasi merupakan bagian penting dalam berkehidupan sosial. Ketidakmampuan dalam berkomunikasi dapat menyebabkan tidak tersampaikannya suatu informasi serta terjadinya kesalahpahaman. Indonesia yang memiliki beragam suku dan budaya tidak dapat dipungkiri akan melahirkan interaksi antar suku yang mempunyai keunikan bahasa masing-masing. Mesin penerjemah statistik hadir sebagai salah satu solusi. Mesin penerjemah statistik pada penelitian ini menggunakan language model toolkit IRSTLM dengan bahasa Indonesia dan bahasa Melayu Sambas dengan data sebanyak 2700 baris kalimat korpus paralel. Algoritma smoothing merupakan komponen yang dapat meningkatkan akurasi hasil terjemahan pada mesin penerjemah. Perlunya dilakukan penelitian terhadap algoritma smoothing untuk mengetahui algortima smoothing dengan nilai BLEU score dan hasil terjemahan terbaik. Proses pengujian dilakukan dengan membandingkan nilai BLEU score dari masing-masing algoritma smoothing menggunakan metode penambahan secara konsisten pada setiap mesin menggunakan 200 korpus sebanyak sepuluh kali pengujian. Algoritma smoothing yang digunakan witten-bell, back-off, kneser-ney dan modified kneser-ney dan hasil yang didapat untuk algoritma smoothing terbaik yaitu modified kneser-ney dengan nilai 68,04% menggunakan 3gram dan 67,8% menggunakan 5gram. Pada pengujian manual dilakukan terlebih dahulu mencari nilai BLEU score terbaik menggunakan metode k-fold cross validation dengan algoritma smoothing modified kneser-ney hasil yang didapat yaitu dengan nilai BLEU score tertinggi sebesar 84,18%. Data yang digunakan pada mesin tersebut dijadikan bahan untuk pengujian manual oleh dua orang ahli bahasa dengan nilai akurasi 94,87% dan 96,65%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here