
Peringkasan Multidokumen Otomatis dengan Menggunakan Log-Likelihood Ratio (LLR) dan Maximal Marginal Relevance (MMR) untuk Artikel dengan Topik Penyakit Menular Bahasa Indonesia
Author(s) -
Ikhwan Nizwar Akhmad,
Anto Satriyo Nugroho,
Bambang Harjito
Publication year - 2018
Publication title -
jurnal linguistik komputasional
Language(s) - Uzbek
Resource type - Journals
ISSN - 2621-9336
DOI - 10.26418/jlk.v1i1.6
Subject(s) - humanities , physics , art
Peningkatan jumlah informasi yang tersedia di internet disamping memberikan manfaat, juga memunculkan masalah tersendiri. Mesin pencarian modern sudah cukup baik untuk mendapatkan informasi tertentu. Namun jumlah informasi yang banyak terkadang menyebabkan pencari informasi kesulitan mendapatkan intisari dari informasi yang dicari. Kondisi ini dikenal sebagai information overload. Peringkasan multidokumen otomatis adalah salah satu solusi untuk masalah ini. Meskipun metode peringkasan multidokumen otomatis sudah dikembangkan sejak 20 tahun lalu, penerapannya dalam Bahasa Indonesia masih terbatas. Dalam tulisan ini, kami melaporkan hasil penelitian yang dilakukan pada peringkasan multidokumen berbahasa Indonesia. Artikel dengan topik penyakit menular merupakan salah satu studi kasus yang menarik untuk peringkasan multidokumen Bahasa Indonesia. Informasi mengenai penyakit menular dibutuhkan oleh masyarakat sehingga tersedia banyak informasi mengenai topik ini di internet. Kondisi ini menyebabkan kemungkinan information overload untuk pencarian dalam topik ini.
Dalam penelitian ini, diterapkan peringkasan multidokumen otomatis dengan menggunakan Log-Likelihood Ratio (LLR) untuk mendapatkan topic signature, dan Maximal Marginal Relevance pada artikel dengan topik penyakit menular untuk mendapatkan ringkasan dengan sedikit perulangan informasi. Penelitian ini menghasilkan ringkasan dengan nilai akurasi sebesar 0,4 (dengan menggunakan ROUGE-S9). Selain itu, dalam penelitian ini didapatkan bahwa topic signature (beserta akurasinya) memegang peran penting dalam proses peringkasan dokumen otomatis.