z-logo
open-access-imgOpen Access
A mathematical model with the generalized McKendrick–von Foerster equation
Author(s) -
Ф.М. Лосанова
Publication year - 2020
Publication title -
vestnik kraunc. fiziko-matematičeskie nauki
Language(s) - English
Resource type - Journals
eISSN - 2079-665X
pISSN - 2079-6641
DOI - 10.26117/2079-6641-2020-33-4-71-77
Subject(s) - uniqueness , generalization , mathematics , boundary value problem , uniqueness theorem for poisson's equation , value (mathematics) , population , pure mathematics , mathematical economics , calculus (dental) , mathematical analysis , statistics , sociology , demography , medicine , dentistry
В данной работе предлагается обобщение математической модели биологического процесса, характеризующего динамику численности популяции, с учетом изменения возраста x за фиксированное время t и изменения количества особей в разные периоды времени при фиксированном x. Рассмотрена нелокальная краевая задача с интегральным условием. Доказана теорема существования и единственности задачи. In this paper, we propose a generalization of the mathematical model of a biological process that characterizes the dynamics of the population size, taking into account the change in age x for a fixed time t and changes in the number of individuals in different periods of time for a fixed x. A nonlocal boundary value problem with an integral condition is considered. The theorem of existence and uniqueness of the problem is proved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here