z-logo
open-access-imgOpen Access
ВЫБОР МОДЕЛИ БИОЛОГИЧЕСКОЙ НЕЙРОННОЙ СЕТИ ДЛЯ СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЯ БИОЖИДКОСТНОЙ ПОВЕРХНОСТИ
Author(s) -
Михаил Е. Семенов,
Т.Ю. Заблоцкая
Publication year - 2019
Publication title -
vestnik kraunc. fiziko-matematičeskie nauki
Language(s) - English
Resource type - Journals
eISSN - 2079-665X
pISSN - 2079-6641
DOI - 10.26117/2079-6641-2019-26-1-78-93
Subject(s) - artificial neural network , computer science , artificial intelligence , segmentation , pattern recognition (psychology)
In the paper, the biological neural network models are analyzed with a purpose to solve the problems of segmentation and pattern recognition when applied to the bio-liquid facies obtained by the cuneiform dehydration method. The peculiarities of the facies’ patterns and the key steps of their digital processing are specified in the frame of the pattern recognition. Feasibility of neural network techniques for the different image data level digital processing is reviewed as well as for image segmentation. The real-life biological neural network architecture concept is described using the mechanisms of the electrical input-output membrane voltage and both induced and endogenic (spontaneous) activities of the neural clusters when spiking. The mechanism of spike initiation is described for metabotropic and ionotropic receptive clusters with the nature of environmental exciting impact specified. Also, the mathematical models of biological neural networks that comprise ot only functional nonlinearities but the hysteretic ones are analyzed and the reasons are given for preference of the mathematical model with delay differential equations is chosen providing its applicability for modeling a single neuron and neural network as well. В работе рассматривается применение моделей биологической нейронной сети для сегментации изображения фации биожидкости, полученной методом клиновидной дегидратации. Выделены основные характерные особенности, присущие паттернам фаций биожидкостей, а также основные этапы их цифровой обработки в рамках задачи распознавания образов. Проведен анализ использования искусственных нейронных сетей для цифровой обработки изображений для разных уровней представления данных; сделан обзор основных нейросетевых методов сегментации. Описан принцип построения биологически достоверных искусственных нейронных сетей, использующих механизмы изменения мембранного потенциала нейронов и учитывающих при генерации спайка как вызванную активность, так и эндогенную (спонтанную) активность нейронных кластеров. Описан механизм инициации спайка для метаботропных и ионотропных рецептивных кластеров с указанием природы запускающего внешнего воздействия. Проведен анализ существующих математических моделей биологических нейросетей, содержащих помимо обычных функциональных нелинейностей нелинейности гистерезисной природы. Сделан выбор в пользу математической модели, использующей дифференциальные уравнения с запаздыванием, которые могут быть применены как для описания отдельного биологического нейрона, так и для описания работы нейронной сети.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here