z-logo
open-access-imgOpen Access
Deformation of tomograms for curvilinear tomography problems
Author(s) -
V. V. Pickalov
Publication year - 2022
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v23r101
Subject(s) - curvilinear coordinates , tomography , deformation (meteorology) , projection (relational algebra) , coordinate system , generalization , geometry , mathematics , mathematical analysis , physics , optics , algorithm , meteorology
Ранее в наших работах было предложено в задачах веерной томографии применять методы перевода пучка веерных лучей в набор параллельных лучей. Это достигалось специальной деформацией искомой томограммы на этапе обратного проецирования измеренных и отфильтрованных проекций, с последующей операцией обратной деформации. Деформация томограммы для каждого направления наблюдения будет своя, но взаимно-однозначный характер этих деформаций позволяет вернуться к исходной системе координат. В данной работе этот метод обобщен на семейство плоских криволинейных траекторий, позволяющих взаимно-однозначные переходы к параллельным лучам. Для каждой обратной проекции изображение оказывается промодулировано известной функцией, следующей из уравнения дифференциала пути заданной траектории. Результаты обобщения широко распространенного в методах двумерной томографии алгоритма FBP демонстрируются на примерах параболической, синусоидальной и веерной траекторий лучей. Earlier in our works, it was proposed to apply the method of a fan-beam mapping into a set of parallel lines in the problems of fan-beam tomography. This was achieved by special deformation of the reconstracted tomogram at the stage of back projection of the measured and filtered projections, followed by the operation of reverse deformation. The deformation of the tomogram for each direction of observation will be different, but the one-to-one nature of these deformations allows you to return to the original coordinate system. In this paper, the method is generalized to a family of plane curvilinear trajectories that allow one-to-one transitions to parallel rays. For each back projection, the image is modulated by a known function following from the path differential of the given trajectory. The results of generalization of the FBP algorithm widely used in two-dimensional tomography methods are demonstrated by examples of parabolic, sinusoidal and fan-beam ray trajectories.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here