z-logo
open-access-imgOpen Access
Algorithms of motion in the particle-in-cell method
Author(s) -
Е.С. Воропаева,
Konstantin Vshivkov,
Lyudmila Vshivkova,
Г. И. Дудникова,
A. A. Efimova
Publication year - 2021
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v22r418
Subject(s) - trajectory , charged particle , differential equation , motion (physics) , equations of motion , particle (ecology) , differential (mechanical device) , partial differential equation , physics , computer science , algorithm , classical mechanics , mathematics , mathematical analysis , quantum mechanics , ion , oceanography , thermodynamics , geology
В настоящей работе представлен новый метод решения уравнений движения заряженных частиц в электромагнитных полях и проведено его сравнение с различными известными модификациями метода Бориса. Созданные двумерный и трехмерный алгоритмы основаны на использовании точного решения дифференциального уравнения для скорости заряженной частицы на шаге по времени. Сравнительный анализ метода Бориса и его модификаций проводился как по точности методов, так и по времени их работы. Новая модификация метода Бориса позволяет точнее вычислять траекторию и скорость заряженной частицы без значительного увеличения сложности расчетов. Показано, что при выборе модификации метода Бориса для решения задачи в первую очередь следует обращать внимание на точность решения, так как более простая и быстрая схема может не дать выигрыша по времени. The article proposes a new method for solving the equations of motion of charged particles in electromagnetic fields and compares this method with various known modifications of the Boris method. The created two-dimensional and three-dimensional algorithms are based on the use of an exact solution of the differential equation for the velocity of a charged particle at a time step. A comparative analysis of the Boris method and its modifications was carried out both in terms of the accuracy of the methods and the time of their operation. A new modification of the Boris method allows more accurate calculations of the trajectory and velocity of a charged particle without a significant increase in the complexity of calculations. It is shown that, when choosing a modification of the Boris method to solve a problem, one should pay attention first of all to the accuracy of the solution, since a simpler and faster scheme may not give a gain in time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom