z-logo
open-access-imgOpen Access
Some features of numerical diagnostics of instantaneous blow-up of the solution by the example of solving the equation of slow diffusion
Author(s) -
Igor V. Prigorniy,
Alexander Anatolyevich Panin,
D. V. Lukyanenko
Publication year - 2021
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v22r106
Subject(s) - extrapolation , mathematics , richardson extrapolation , partial differential equation , a priori and a posteriori , boundary value problem , diffusion , diffusion equation , mathematical analysis , scheme (mathematics) , differential equation , ordinary differential equation , physics , philosophy , epistemology , thermodynamics , economy , economics , service (business)
В работе демонстрируется, как метод апостериорной оценки порядка точности разностной схемы по Ричардсону позволяет сделать вывод о некорректности постановки (в смысле отсутствия решения) решаемой численно начально-краевой задачи для уравнения в частных производных. Это актуально в ситуации, когда аналитическое доказательство некорректности постановки ещё не получено или принципиально невозможно. The paper demonstrates how the method of a posteriori estimation of the order of accuracy for the difference scheme according to the Richardson extrapolation method allows one to conclude that the formulation of the numerically solved initial-boundary value problem for a partial differential equation is ill-posed (in the sense of the absence of a solution). This is important in a situation when the ill-posedness of the formulation is not analytically proved yet or cannot be proved in principle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here