z-logo
open-access-imgOpen Access
An error estimate for an approximate solution to ordinary differential equations obtained using the Chebyshev series
Author(s) -
O. B. Arushanyan,
С.Ф. Залеткин
Publication year - 2020
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v21r321
Subject(s) - mathematics , series (stratigraphy) , ordinary differential equation , chebyshev nodes , chebyshev equation , chebyshev filter , partial differential equation , chebyshev polynomials , chebyshev iteration , nonlinear system , differential equation , mathematical analysis , orthogonal polynomials , classical orthogonal polynomials , paleontology , biology , physics , quantum mechanics
Рассматривается приближенный метод решения задачи Коши для нелинейных обыкновенных дифференциальных уравнений первого порядка, основанный на применении смещенных рядов Чебышёва и квадратурной формулы Маркова. Приведены способы оценки погрешности приближенного решения, выраженного в виде частичной суммы ряда некоторого порядка. Погрешность оценивается с помощью второго приближенного решения, вычисленного специальным образом и представленного частичной суммой ряда более высокого порядка. На основе предложенных способов оценки погрешности построен алгоритм автоматического разбиения промежутка интегрирования на элементарные сегменты, делающие возможным вычисление приближенного решения с наперед заданной точностью. Работа метода проиллюстрирована примерами, в том числе примером из небесной механики. An approximate method of solving the Cauchy problem for nonlinear first-order ordinary differential equations is considered. The method is based on using the shifted Chebyshev series and a Markov quadrature formula. Some approaches are given to estimate the error of an approximate solution expressed by a partial sum of a certain order series. The error is estimated using the second approximation of the solution expressed by a partial sum of a higher order series. An algorithm of partitioning the integration interval into elementary subintervals to ensure the computation of the solution with a prescribed accuracy is discussed on the basis of the proposed approaches to error estimation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here