
An error estimate for an approximate solution to ordinary differential equations obtained using the Chebyshev series
Author(s) -
O. B. Arushanyan,
С.Ф. Залеткин
Publication year - 2020
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v21r321
Subject(s) - mathematics , series (stratigraphy) , ordinary differential equation , chebyshev nodes , chebyshev equation , chebyshev filter , partial differential equation , chebyshev polynomials , chebyshev iteration , nonlinear system , differential equation , mathematical analysis , orthogonal polynomials , classical orthogonal polynomials , paleontology , biology , physics , quantum mechanics
Рассматривается приближенный метод решения задачи Коши для нелинейных обыкновенных дифференциальных уравнений первого порядка, основанный на применении смещенных рядов Чебышёва и квадратурной формулы Маркова. Приведены способы оценки погрешности приближенного решения, выраженного в виде частичной суммы ряда некоторого порядка. Погрешность оценивается с помощью второго приближенного решения, вычисленного специальным образом и представленного частичной суммой ряда более высокого порядка. На основе предложенных способов оценки погрешности построен алгоритм автоматического разбиения промежутка интегрирования на элементарные сегменты, делающие возможным вычисление приближенного решения с наперед заданной точностью. Работа метода проиллюстрирована примерами, в том числе примером из небесной механики. An approximate method of solving the Cauchy problem for nonlinear first-order ordinary differential equations is considered. The method is based on using the shifted Chebyshev series and a Markov quadrature formula. Some approaches are given to estimate the error of an approximate solution expressed by a partial sum of a certain order series. The error is estimated using the second approximation of the solution expressed by a partial sum of a higher order series. An algorithm of partitioning the integration interval into elementary subintervals to ensure the computation of the solution with a prescribed accuracy is discussed on the basis of the proposed approaches to error estimation.