
Allocation of three brightness levels on a noisy image
Author(s) -
A. V. Likhachov
Publication year - 2020
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v21r216
Subject(s) - brightness , pixel , histogram , noise (video) , binary number , artificial intelligence , image (mathematics) , mathematics , computer vision , computer science , pattern recognition (psychology) , algorithm , statistics , physics , optics , arithmetic
Предложен новый метод восстановления изображений, имеющих три неизвестные градации яркости. Для их определения используются фрагменты изображения, гистограммы которых согласуются с заданным распределением шума. Далее все пиксели распределяются по найденным уровням яркости посредством бинарной классификации. Выполнен вычислительный эксперимент, по результатам которого оказалось, что ошибка оценки исходных яркостей не превысила 3%. При относительно низком уровне шума доля неверно классифицированных пикселей от их общего числа составила менее 0.006. A new recovery method for images with three unknown brightness levels is proposed. In order to determine these levels, we use the image fragments whose histograms correspond to a given noise distribution. All pixels are distributed over the found brightness levels by a binary classification. The numerical results show the error in the estimate of the original brightnesses is no more than 3%. When the noise level is relatively low, the fraction of wrong classified pixels in their total amount is less than 0.006.