Open Access
Comparison of data assimilation methods based on the classical, ensemble and local Kalman filter by the example of the advection equation and Lorenz system
Author(s) -
Д.А. Ростилов,
Maxim Kaurkin,
Р.А. Ибраев
Publication year - 2018
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v19r445
Subject(s) - ensemble kalman filter , alpha beta filter , data assimilation , kalman filter , fast kalman filter , invariant extended kalman filter , extended kalman filter , control theory (sociology) , advection , mathematics , computer science , filter (signal processing) , algorithm , physics , statistics , moving horizon estimation , meteorology , artificial intelligence , computer vision , control (management) , thermodynamics
Статья посвящена сравнению трех методов усвоения данных наблюденй: фильтр Калмана (Kalman Filter, KF), ансамблевый фильтр Калмана (Ensemble Kalman Filter, EnKF) и локальный фильтр Калмана (Local Kalman Filter, LKF). Выполнены численные эксперименты по усвоению синтетических данных этими методами в двух разных моделях, описываемых системами дифференциальных уравнений. Первая описывается одномерным линейным уравнением адвекции, а вторая - системой Лоренца. Проведено сравнение средних ошибок и времени исполнения этих методов при различных размерах модели, которые согласуются с теоретическим оценками. Показано, что вычислительная сложность ансамблевого и локального фильтров Калмана растет линейно с увеличением размера модели, в то время как у первого метода эта сложность растет со скоростью куба. Рассмотрена эффективность одной из возможных параллельных реализаций локального фильтра Калмана. The paper is devoted to the comparison of three data assimilation methods: the Kalman Filter (Kalman Filter, KF), the ensemble Kalman Filter (EnKF), and the local Kalman Filter (LKF). A number of numerical experiments on data assimilation by these methods are performed on two different models described by systems of differential equations. The first one is a simple one-dimensional linear equation of advection and the second one is the Lorenz system. The mean errors and the execution time of these assimilation methods are compared for different model sizes. The numerical results are consistent with the theoretical estimates. It is shown that the computational complexity of local and ensemble Kalman filters grows linearly with the size of the model, whereas in the classical Kalman Filter this complexity increases according to the cubic law. The efficiency of parallel implementation of the local Kalman filter is considered.