z-logo
open-access-imgOpen Access
A higher-order difference scheme of the Cabaret class for solving the transport equation
Author(s) -
A.V. Solovjev,
A. V. Danilin
Publication year - 2018
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v19r217
Subject(s) - scheme (mathematics) , mathematics , scalar (mathematics) , class (philosophy) , central differencing scheme , order (exchange) , representation (politics) , convection–diffusion equation , finite difference scheme , mathematical analysis , computer science , finite difference coefficient , physics , geometry , finance , artificial intelligence , finite element method , mixed finite element method , politics , political science , law , economics , thermodynamics
Предложена новая разностная схема класса Кабаре повышенного порядка точности для решения скалярного уравнения переноса. Порядок аппроксимации разностной схемы равен четырем. Построено балансно-характеристическое представление схемы и приведены дисперсионные свойства. Для предложенной разностной схемы в сравнении с классической схемой Кабаре рассмотрены примеры решения уравнения переноса для гладкого и разрывного профиля. A new difference scheme of the Cabaret class with a higher order of accuracy for solving the scalar transport equation is proposed. The order of approximation of this difference scheme is equal to four. The balance-characteristic representationof the scheme is constructed and the dispersion properties are given. For the proposed difference scheme, a number of examples to solve the transport equation for smooth and discontinuous profiles are considered in comparison with the classical Cabaret scheme.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here