
Parallel implementation of a meshfree method for calculating flows of ideal incompressible fluid
Author(s) -
В. Н. Говорухин
Publication year - 2017
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v18r215
Subject(s) - inviscid flow , vorticity , stream function , mathematics , fourier series , incompressible flow , flow (mathematics) , mathematical analysis , vortex , classical mechanics , physics , geometry , mechanics
Предложен параллельный алгоритм для расчета двумерной динамики невязкой несжимаемой жидкости на вращающейся сфере. Основой алгоритма является бессеточный метод вихрей в ячейках для решения начально-краевой задачи для нестационарных уравнений движения идеальной жидкости в терминах абсолютнойзавихренности и функции тока. Метод базируется на аппроксимации функции тока отрезком ряда Фурье, приближении поля завихренности ее значениями в частицах и расчете траекторий частиц с использованием псевдосимплектического интегратора. Схема распараллеливания на каждом временном шаге включает в себя расщепление по подмножествам частиц и декомпозицию области течения. Представлено описание алгоритма для вычислительных систем с общей памятью. Эффективность метода и производительность параллельного алгоритма оценены экспериментально при различных параметрах расчета, показана хорошая масштабируемость алгоритма. A parallel algorithm for calculating the two-dimensional dynamics of inviscid incompressible fluids on a rotating sphere is proposed. The algorithm is based on the meshfree vortex-in-cell method for solving an initial boundary value problem for unsteady equations describing the motion of an ideal fluid in terms of the absolute vorticity and stream function. The method is based on the approximation of the stream function using the Fourier series. The vorticity field is defined by its values on a set of particles. The particle trajectories are calculated using a pseudo-symplectic integrator. At each time step, the parallelization involves the splitting into subsets of particles and the decomposition of the flow region. The efficiency of the parallel algorithm and its performance are evaluated experimentally for various parameters of the method. The numerical results show a good scalability of the algorithm.