z-logo
open-access-imgOpen Access
An orthogonal power method of solving the partial eigenproblem for a symmetric nonnegative definite matrix
Author(s) -
I. V. Kireev
Publication year - 2016
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v17r105
Subject(s) - mathematics , orthogonalization , eigenvalues and eigenvectors , linear subspace , square matrix , symmetric matrix , power iteration , matrix (chemical analysis) , positive definite matrix , conjugate gradient method , convergence (economics) , eigendecomposition of a matrix , conjugate residual method , iterative method , pure mathematics , mathematical optimization , algorithm , computer science , physics , materials science , quantum mechanics , gradient descent , machine learning , artificial neural network , economics , composite material , economic growth
Предложена и обоснована экономичная версия метода сопряженных направлений для построения нетривиального решения однородной системы линейных алгебраических уравнений с вырожденной симметричной неотрицательно определенной квадратной матрицей. Предложено однопараметрическое семейство одношаговых нелинейныхитерационных процессов вычисления собственного вектора, отвечающего наибольшему собственному значению симметричной неотрицательно определенной квадратной матрицы. Это семейство включает в себя степенной метод как частный случай. Доказана сходимость возникающих последовательностей векторов к собственному вектору, ассоциированному с наибольшим характеристическим числом матрицы. Предложена двухшаговая процедура ускорения сходимости итераций этих процессов, в основе которой лежит ортогонализация в подпространстве Крылова. Приведены результаты численных экспериментов. An efficient version of the conjugate direction method to find a nontrivial solution of a homogeneous system of linear algebraic equations with a singular symmetric nonnegative definite square matrix is proposed and substantiated. A one-parameter family of one-step nonlinear iterative processes to determine the eigenvector corresponding to the largest eigenvalue of a symmetric nonnegative definite square matrix is also proposed. This family includes the power method as a special case. The convergence of corresponding vector sequences to the eigenvector associated with the largest eigenvalue of the matrix is proved. A two-step procedure is formulated to accelerate the convergence of iterations for these processes. This procedure is based on the orthogonalization in Krylov subspaces. A number of numerial results are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here