Open Access
An orthogonal power method of solving the partial eigenproblem for a symmetric nonnegative definite matrix
Author(s) -
I. V. Kireev
Publication year - 2016
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v17r105
Subject(s) - mathematics , orthogonalization , eigenvalues and eigenvectors , linear subspace , square matrix , symmetric matrix , power iteration , matrix (chemical analysis) , positive definite matrix , conjugate gradient method , convergence (economics) , eigendecomposition of a matrix , conjugate residual method , iterative method , pure mathematics , mathematical optimization , algorithm , computer science , physics , materials science , quantum mechanics , gradient descent , machine learning , artificial neural network , economics , composite material , economic growth
Предложена и обоснована экономичная версия метода сопряженных направлений для построения нетривиального решения однородной системы линейных алгебраических уравнений с вырожденной симметричной неотрицательно определенной квадратной матрицей. Предложено однопараметрическое семейство одношаговых нелинейныхитерационных процессов вычисления собственного вектора, отвечающего наибольшему собственному значению симметричной неотрицательно определенной квадратной матрицы. Это семейство включает в себя степенной метод как частный случай. Доказана сходимость возникающих последовательностей векторов к собственному вектору, ассоциированному с наибольшим характеристическим числом матрицы. Предложена двухшаговая процедура ускорения сходимости итераций этих процессов, в основе которой лежит ортогонализация в подпространстве Крылова. Приведены результаты численных экспериментов. An efficient version of the conjugate direction method to find a nontrivial solution of a homogeneous system of linear algebraic equations with a singular symmetric nonnegative definite square matrix is proposed and substantiated. A one-parameter family of one-step nonlinear iterative processes to determine the eigenvector corresponding to the largest eigenvalue of a symmetric nonnegative definite square matrix is also proposed. This family includes the power method as a special case. The convergence of corresponding vector sequences to the eigenvector associated with the largest eigenvalue of the matrix is proved. A two-step procedure is formulated to accelerate the convergence of iterations for these processes. This procedure is based on the orthogonalization in Krylov subspaces. A number of numerial results are discussed.