Open Access
A modification of the CABARET scheme for numerical simulation of multicomponent gaseous flows in two-dimensional domains
Author(s) -
A. V. Danilin,
А. В. Соловьев,
A. B. Zaitsev
Publication year - 2015
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v16r341
Subject(s) - discretization , shock (circulatory) , mechanics , boundary value problem , shock wave , finite volume method , scheme (mathematics) , boundary (topology) , mathematics , physics , classical mechanics , mathematical analysis , medicine
Предложен явный численный алгоритм для расчета течений смесей идеальных газов в двумерных областях. Приведены физическая модель и уравнения движения смеси в консервативной и характеристической формах.Дискретизация уравнений движения произведена по методике Кабаре. Алгоритм испытан на задачах о прохождении ударной волны в воздухе через неоднородности из легкого и тяжелого газов, начальные условия для которых адаптированы из рассмотренных другими авторами натурных и численных экспериментов. Показано хорошее совпадение расчетов по предложенному алгоритму с результатами этих экспериментов. An explicit numerical algorithm for calculation of two-dimensional motion of multicomponent gas mixtures is proposed. A physical model as well as conservative and characteristic forms of governing equations are given. The discretization of the governing equations is made in accordance with the CABARET (Compact Accurately Boundary Adjusting-REsolution Technique) approach. The proposed algorithm is tested on problems of air shock waves passing through dense and dilute volume inhomogeneities with initial conditions adopted from numerical and experimental studies of other authors. A good agreement between the results of these studies and those obtained by the CABARET approach is shown.