z-logo
open-access-imgOpen Access
An approach for constructing one-point iterative methods for solving nonlinear equations of one variable
Author(s) -
А. Н. Громов
Publication year - 2015
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v16r229
Subject(s) - mathematics , convergence (economics) , nonlinear system , local convergence , rate of convergence , iterative method , variable (mathematics) , transcendental equation , root (linguistics) , iterative and incremental development , mathematical analysis , mathematical optimization , numerical analysis , computer science , computer network , channel (broadcasting) , physics , linguistics , philosophy , software engineering , quantum mechanics , economics , economic growth
Предложен подход к построению одноточечных итерационных методов для решения нелинейных уравнений одного переменного. Подход основан на использовании понятия полюса в качестве особой точки и на применении критерия сходимости Коши. Показано, что такой подход приводит к новым итерационным процессам высшего порядка, которые имеют более широкую область сходимости по сравнению с известными методами. Доказаны теоремы сходимости и получены оценки скорости сходимости. Для многочленов, имеющих только действительные корни, итерационный процесс сходится для любого начального приближения. В общем случае для действительных корней трансцендентных уравнений сходимость имеет место при выборе начального приближения в окрестности корня. An approach for constructing one-point iterative methods for solving nonlinear equations of one variable is proposed. This approach is based on the concept of a pole as a singular point and on using Cauchy's convergence criterion. It is shown that such an approach leads to new iterative processes of higher order with larger convergence domains compared to the known iterative methods. Convergence theorems are proved and convergence rate estimates are obtained. For polynomials having only real roots, the iterative process converges for any initial approximation to the sought root. Generally, in the case of real roots of transcendental equations, the convergence takes place when an initial approximation is chosen near the sought root.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here