z-logo
open-access-imgOpen Access
Application of the boundary integral equation method to numerical solution of Dirichlet's boundary value problem in the elasticity theory on polygons
Author(s) -
И.О. Арушанян
Publication year - 2015
Publication title -
vyčislitelʹnye metody i programmirovanie
Language(s) - English
Resource type - Journals
eISSN - 1726-3522
pISSN - 0507-5386
DOI - 10.26089/nummet.v16r108
Subject(s) - mathematics , boundary value problem , mixed boundary condition , mathematical analysis , free boundary problem , integral equation , singular boundary method , dirichlet problem , dirichlet boundary condition , elasticity (physics) , dirichlet distribution , robin boundary condition , elliptic boundary value problem , boundary element method , finite element method , physics , thermodynamics
Рассматривается первая краевая задача плоской теории упругости в области с конечным числом угловых точек. Задаче ставится в соответствие система граничных интегральных уравнений теории потенциала. Исследуется вопрос об эффективном вычислении приближенного решения исходной краевой задачи на основе численного решения системы граничных интегральных уравнений. Dirichlet's boundary value problem of the two-dimensional elasticity theory is considered for domains with a finite number of corner points. This problem is put in correspondence with a system of boundary integral equations used in the potential theory. An approach to the efficient approximate solution of the original boundary value problem by numerical solving the system of boundary integral equations is proposed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here