z-logo
open-access-imgOpen Access
CALCULATION OF THE DISTRIBUTION DENSITY OF ATOMS
Author(s) -
С.А. Желтов,
Н.Н. Чупятов
Publication year - 2021
Publication title -
ûžno-sibirskij naučnyj vestnik
Language(s) - English
Resource type - Journals
ISSN - 2304-1943
DOI - 10.25699/sssb.2021.39.5.008
Subject(s) - cuvette , monte carlo method , deposition (geology) , plane (geometry) , coating , materials science , particle (ecology) , sorting , molecular physics , computational physics , surface (topology) , substrate (aquarium) , homogeneous , chemistry , geometry , statistical physics , physics , optics , nanotechnology , mathematics , algorithm , paleontology , statistics , oceanography , sediment , geology , biology
Процесс нанесения покрытий на поверхности является одним из важнейших при нанесении защитных слоев. Особенно актуальным является метод молекулярно-лучевой эпитаксии, который применяют, например, для нанесения покрытий металлов и полимеров на металлические поверхности. Однако при производстве установок необходимо провести много предварительных экспериментов для получения максимально однородных напыленных поверхностей: размеры кювет, уровень расплава в кювете, расстояния до напыляемой поверхности и расположения системы кювет.Упрощением проведения этих реальных экспериментов является метод Монте-Карло. Моделируя компьютерные эксперименты с предполагаемыми параметрами установки, можно быстро получить необходимый результат с высокой точностью. В каждом компьютерном эксперименте разыгрывался вылет N = 108 частиц (атомов, молекул), что обеспечивало получение всех результатов с высокой точностью.Было установлено, что результаты расчетов не зависят от масс частиц. Анализ полученных данных позволил установить, что частицы, испарявшиеся с поверхности расплава по равновероятному закону и по закону косинуса, имеют близкие распределения, отличающиеся не более чем на 10%. Увеличение расстояния от верхнего края пластины до напыляемой плоскости с расстояния G = 0,01 м до расстояния G = 0,05 м приводит к тому, что плотность распределения для первого случая, имеющая значительный максимум около середины кюветы, становится практически равномерным распределением во втором случае. Применение метода Монте-Карло для процессов напыления в вакууме эффективно использовать не только для плоских поверхностей, но и на поверхности произвольных форм, например, цилиндрических. The coating process on surfaces is one of the most important in the application of protective layers. Particularly relevant is the method of molecular beam epitaxy, which is used, for example, for the deposition of coatings of metals and polymers on metal surfaces. However, in the manufacture of installations, it is necessary to carry out many preliminary experiments to obtain the most homogeneous sprayed surfaces: the dimensions of the cuvettes, the level of the melt in the cuvette, the distance to the sprayed surface and the location of the cuvette system.A simplification of these real-world experiments is the Monte Carlo method. By simulating computer experiments with the expected parameters of the installation, it is possible to quickly obtain the required result with high accuracy. In each computer experiment, the emission of N = 108 particles (atoms, molecules) was played, which ensured obtaining all results with high accuracy.It was found that the calculation results do not depend on the particle masses. An analysis of the data obtained made it possible to establish that the particles evaporated from the surface of the melt according to the equiprobable law and according to the cosine law have similar distributions differing by no more than 10%. An increase in the distance from the upper edge of the plate to the sprayed plane from a distance of G = 0.01 m to a distance of G = 0.05 m leads to the fact that the distribution density for the first case, which has a significant maximum near the middle of the cell, becomes an almost uniform distribution in the second case. ... The use of the Monte Carlo method for vacuum deposition processes can be effectively used not only for flat surfaces, but also on surfaces of arbitrary shapes, for example, cylindrical ones.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here