z-logo
open-access-imgOpen Access
DNA Polymerase Inhibition by High Kinetic Stability of T-HgII-T Base Pairs
Author(s) -
Olivia P. Schmidt
Publication year - 2017
Publication title -
chimia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.387
H-Index - 55
eISSN - 2673-2424
pISSN - 0009-4293
DOI - 10.2533/chimia.2017.181
Subject(s) - base pair , dna , chemistry , kinetics , dissociation (chemistry) , fluorescence , duplex (building) , kinetic energy , stereochemistry , receptor–ligand kinetics , biophysics , crystallography , biology , biochemistry , physics , receptor , quantum mechanics
A fluorescent surrogate of thymidine called DMAT was used for the first fluorescence-based study of HgII binding to discrete T-T sites in duplex DNA. The fluorescent properties of DMAT-A base pairs were highly sensitive to wild-type T-HgII-T base pair formation at an adjacent site, allowing for a determination of the precise thermodynamic and kinetic parameters of these metal binding reactions. T-HgII-T complexes exhibited equilibrium dissociation constants of Kd ? 8–50 nM. These high-affinity binding interactions are characterized by very slow association and dissociation kinetics (kon ? 104– 105 M–1s–1, koff ? 10–4 – 10–3s–1), revealing exceptionally high kinetic stabilities of T-HgII-T base pairs (half-lives = 0.3–1.3 h). Duplex DNA containing DMAT and no T-T mismatch exhibited nonspecific HgII binding affinities of Kd ? 2.0 ?M. The high kinetic stabilities of T-HgII-T resulted in the inhibition of dynamic processes such as DNA strand invasion and strand displacement during enzymatic DNA synthesis, which led to premature chain termination. These results demonstrated that T-HgII-T base pairs are kinetically distinct from T-A base pairs and therefore are likely to disrupt DNA metabolism in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here