
Functionalised Clathrochelate Complexes – New Building Blocks for Supramolecular Structures
Author(s) -
Matthew D. Wise,
Kay Severin
Publication year - 2015
Publication title -
chimia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.387
H-Index - 55
eISSN - 2673-2424
pISSN - 0009-4293
DOI - 10.2533/chimia.2015.191
Subject(s) - supramolecular chemistry , steric effects , octahedron , chemistry , aqueous solution , materials science , polymer chemistry , ion , stereochemistry , molecule , organic chemistry
Tris(dioxime) iron(II) clathrochelate complexes functionalised with 3- and 4-pyridyl groups have been employed as building blocks in the preparation of supramolecular structures by coordination-driven self-assembly. These complexes possess a number of desirable characteristics, being straightforward to synthesise and offering ample opportunity for steric and functional modification. Clathrochelate-based 4,4'-bipyridyl metalloligands from 1.5 nm to 5.4 nm in length were prepared in up to two steps and their potential as building blocks for supramolecular architectures demonstrated through the preparation of a discrete molecular square and a three dimensional (3D) coordination polymer. Furthermore, the structure-directing capability of clathrochelate building blocks was illustrated through the synthesis of octahedral cage compounds, which are capable of encapsulating the large, hydrophobic BPh4– anion in aqueous solvent mixtures.