
Global optimization via neural network approximation of inverse coordinate mappings with evolutionary parameter control
Author(s) -
Кирилл Владимирович Пушкарев
Publication year - 2019
Publication title -
programmnye sistemy: teoriâ i priloženiâ
Language(s) - Russian
Resource type - Journals
ISSN - 2079-3316
DOI - 10.25209/2079-3316-2019-10-2-33-65
Subject(s) - artificial neural network , inverse , computer science , inverse problem , control (management) , mathematics , coordinate system , mathematical optimization , artificial intelligence , mathematical analysis , geometry
Представлен гибридный метод глобальной оптимизации НАИЗ-PSO на основе нейросетевой аппроксимации инверсных зависимостей (координат от значений целевой функции) и метода роя частиц, служащий для нахождения глобального минимума непрерывной целевой функции многих переменных в области, имеющей вид многомерного параллелепипеда. Целевая функция рассматривается как абстрактная вычислительная процедура («чёрный ящик»). Метод использует группы пробных точек, движущихся как в методе роя частиц. Одна из возможных целей движения определяется через отображение пониженных значений целевой функции в координаты посредством модифицированных дуальных обобщённо-регрессионных нейронных сетей, конструируемых по пробным точкам. Параметрами процесса управляет эволюционный алгоритм. В алгоритме управления популяция состоит из эволюционирующих правил, заключающих в себе наборы параметров. Для оценки приспособленности особи используются две числовые характеристики: краткосрочная (очарование) и долгосрочная (достоинство). По очарованию правила отбираются для размножения и применения. Достоинством определяется выживание особи при формировании новой популяции. Двойная оценка правил решает проблему вымирания потенциально полезных особей при краткосрочном изменении ситуации. Преимущество эволюционного управления над случайным изменением параметров НАИЗ-PSO в процессе поиска, а также тенденция к уменьшению погрешности при повторном использовании базы правил показаны на тестовых задачах с целевыми функциями 100 переменных.