
ПИТАННЯ СКЛАДНОСТІ ПРОЦЕДУРИ ПОБУДОВИ СХЕМИ АЛГОРИТМІЧНОГО ДЕРЕВА КЛАСИФІКАЦІЇ
Author(s) -
Igor Povkhan
Publication year - 2020
Publication title -
tehnìčnì nauki ta tehnologìï
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2519-4569
pISSN - 2411-5363
DOI - 10.25140/2411-5363-2020-3(21)-142-153
Subject(s) - computer science
Актуальність теми дослідження. На сучасному етапі розвитку інформаційних систем та технологій, які базуються на математичних моделях теорії штучного інтелекту (методах та схемах алгоритмічних дерев класифікації), виникає принципова проблема вузької спеціалізації наявних підходів та методів у соціально-економічних, екологічних та інших системах первинного аналізу та обробки великих масивів інформації. Задачі, які об’єднуються тематикою розпізнавання образів, дуже різноманітні та виникають у сучасному світі в усіх сферах економіки та соціального контенту діяльності людини, що приводить до необхідності побудови та дослідження математичних моделей відповідних систем. На сьогодні немає універсального підходу до їх розв’язання, запропоновано декілька досить загальних теорій та підходів, що дозволяють вирішувати багато типів (класів) задач, але їх прикладні застосування відрізняються досить великою чутливістю до специфіки самої задачі або предметної області застосування. Представлена робота присвячена проблемі моделей логічних та алгоритмічних дерев класифікації (схем ЛДК/АДК), пропонує оцінку складності структур алгоритмічних дерев (моделей дерев класифікації), які складаються з незалежних та автономних алгоритмів класифікації і будуть являти собою певною мірою новий алгоритм розпізнавання (зрозуміло, що синтезований із відомих схем, алгоритмів та методів). Постановка проблеми. Нині актуальні різні підходи до побудови систем розпізнавання у вигляді дерев класифікації (ЛДК/АДК), причому інтерес до методів розпізнавання, які використовують дерева класифікації, викликаний багатьма корисними властивостями, якими вони володіють. З одного боку, складність класу функцій розпізнавання у вигляді моделей дерев класифікації, при визначених умовах, не перевищують складності класу лінійних функцій роз-пізнавання (простішого з відомих). З іншого – функції розпізнавання у вигляді дерев класифікації дозволяють виділити в процесі класифікації як причинно-наслідкові зв’язки (та однозначно врахувати їх у подальшому), так і фактори випадковості або невизначеності, тобто врахувати одночасно і функціональні, і стохастичні відношення між властивостями та поведінкою всієї системи. При цьому відомо, що процес класифікації нових, таких, що досі не зустрічалися, об’єктів світу багатьох тварин і людей (за винятком об’єктів, інформація про які передається генетичним шляхом (наслідковим), а також в деяких інших випадках), відбувається за так званим логічним деревом рішень (у зв‘язку з нейромережевою концепцією). Зрозуміло, що доцільно не розробляти новий алгоритм, а запропонувати деяку концепцію раціонального використання вже накопиченого потенціалу алгоритмів та методів класифікації у вигляді моделей алгоритмічних дерев класифікації (структур АДК). Саме тому ця робота має намір хоча б частково подолати ці обмеження та присвячена оцінці складності процедури побудови моделей алгоритмічних (логічних) дерев класифікації в галузі задач розпізнавання. Аналіз останніх досліджень і публікацій. У дослідженні розглянуті останні наукові публікації у відкритому доступі, які присвячені загальній проблемі підходів, методів, алгоритмів та схем розпізнавання (моделей ЛДК/АДК) дискретних об’єктів (дискретних зображень) у задачах розпізнавання образів (теорії штучного інтелекту). Виділення недосліджених частин загальної проблеми. Можливість простого та економного методу побудови моделі алгоритмічного дерева класифікації (або структур АДК/ЛДК) та оцінка складності такої процедури (моделі структури АДК/ЛДК) на основі початкових масивів дискретної інформації великого об’єму. Постановка завдання. Дослідження актуального питання складності загальної процедури побудови алгоритмічного дерева класифікації (моделі АДК) на основі концепції поетапної селекції наборів незалежних алгоритмів класифікації (можливих їх різнотипних множин та сполучень), яке для заданої початкової навчальної вибірки (масиву дискретної інформації) будує деревоподібну структуру (модель класифікації АДК), з набору алгоритмів оцінених на кожному кроці схеми побудови моделі за даною початковою вибіркою. Виклад основного матеріалу. Пропонується оцінка складності процедури побудови алгоритмічного дерева класифікації для довільного випадку (для умов слабкого та сильного розділення класів навчальної вибірки). Розв’язок цього питання має принциповий характер, щодо питань оцінки структурної складності моделей класифікації (у вигляді деревоподібних конструкцій), структур АДК дискретних об’єктів для широкого класу прикладних задач класифікації та розпізнавання в плані розробки перспективних схем та методів їх фінальної оптимізації (мінімізації) конструкції. Це дослідження має актуальність не лише для конструкцій алгоритмічних дерев класифікації, але й дозволяє розширити саму схему оцінки складності і на загальний випадок структур логічних дерев класифікації. Висновки відповідно до статті. Досліджені питання структурної складності конструкцій ЛДК/АДК, запропонована верхня оцінка складності для процедури побудови алгоритмічного дерева класифікації в умовах слабкого та сильного розділення класів початкової навчальної вибірки.