z-logo
open-access-imgOpen Access
Numerical Simulation of High Frequency Wave Coupling within a Hall Thruster
Author(s) -
Aaron Knoll,
Nicolas Gascon,
Mark Cappelli
Publication year - 2007
Publication title -
surrey open research repository (university of surrey)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2007-5266
Subject(s) - coupling (piping) , physics , acoustics , mechanics , electrical engineering , aerospace engineering , engineering , mechanical engineering
A 2-dimensional Hall thruster simulation has been developed in the axial-azimuthal coordinate plane. The goal of this simulation is to numerically model high frequency plasma waves within the discharge channel of the Hall thruster, and study the contribution of these waves to the time-averaged axial electron drift. This model uses a continuum (fluid) representation for both the electrons and ions. In order to simulate oscillations in the electron field it was necessary to model the electrons dynamically, as opposed to assuming a steady state solution at each time step. The electron momentum equations also include electron inertia terms that are normally neglected in typical Hall thruster models. These inertia terms provide a wave coupling mechanism between axially and azimuthally propagating waves. This numerical model was able to reproduce two dominant high frequency plasma oscillations in the Hall thruster: a 74MHz Kelvin-Helmholtz type shearing instability, and a 7MHz oscillation in the plasma density that has also been observed experimentally. The simulation was successful at predicting the axial electron drift in good agreement with experiment. The results of this study suggest that the plasma oscillations play a dominant role in the electron transport process. In particular, contributions to the electron transport resulting from perturbations in the azimuthal electron velocity were found to be greater than 300% of classical collisional transport

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom