z-logo
open-access-imgOpen Access
Empirical Assessment of Deep Gaussian Process Surrogate Models for Engineering Problems
Author(s) -
Dushhyanth Rajaram,
Tejas G. Puranik,
S. Ashwin Renganathan,
Woongje Sung,
Olivia J. Pi Fischer,
Dimitri N. Mavris,
Arun Ramamurthy
Publication year - 2020
Publication title -
journal of aircraft
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 94
eISSN - 1533-3868
pISSN - 0021-8669
DOI - 10.2514/1.c036026
Subject(s) - gaussian process , computer science , robustness (evolution) , gaussian , uncertainty quantification , hyperparameter , curse of dimensionality , surrogate model , kriging , machine learning , gaussian function , artificial intelligence , mathematical optimization , algorithm , mathematics , biochemistry , chemistry , physics , quantum mechanics , gene

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom