
Effects of Surface Preparation on the Corrosion Behavior of Mild Steel
Author(s) -
W.A. Ayoola,
Stephen Durowaye,
Kenneth Andem,
Olujide OYERİNDE,
Jesutofunmi Ojakoya
Publication year - 2021
Publication title -
mağallaẗ tikrīt li-l-ʻulūm al-handasiyyaẗ/tikrit journal of engineering sciences
Language(s) - English
Resource type - Journals
eISSN - 2312-7589
pISSN - 1813-162X
DOI - 10.25130/tjes.29.1.2
Subject(s) - corrosion , grit , metallurgy , zinc , materials science , grinding , psychology , developmental psychology
Surface preparation of engineering materials is necessary for preventing corrosion and subsequent failure of materials in service. There are different methods of surface preparations that can affect engineering materials in different ways. This study investigated the effect of surface preparation on the corrosion behavior of zinc sprayed and unsprayed mild steel. Quantitative analysis and potentiodynamic polarization techniques were used to evaluate the immersed samples of different surface preparations. The results indicated that the least corrosion rate was observed for the uncoated sample prepared with CC1200 grit paper at 0.041 mpy and successive samples in the order of CC220 grit paper at 0.047 mpy < P60 grit paper at 0.052 mpy < filing at 0.064 mpy and grinding at 0.074 mpy after 42-days of immersion. The prepared samples that were further coated with zinc spray demonstrated a similar trend. The sample prepared with CC1200 grit paper and further coated with zinc spray exhibited the lowest corrosion rate of 1.35 x 10-9 mpy. Potentiodynamic polarization results further suggested that the same behavior was observed in the quantitative analysis.