
Estimador neuronal del ángulo del rotor de generadores sincrónicos a partir de mediciones de tensión y corriente en terminales
Author(s) -
René A. Barrera,
Juan Mora,
Sandra Martínez Pérez
Publication year - 2011
Publication title -
ingeniería y competitividad revista científica y tecnológica/ingeniería y competitividad
Language(s) - Spanish
Resource type - Journals
eISSN - 2027-8284
pISSN - 0123-3033
DOI - 10.25100/iyc.v11i1.2467
Subject(s) - humanities , physics , philosophy
En este artículo se desarrolla un modelo tipo caja negra para la estimación del ángulo del rotor de un generador sincrónico, utilizando mediciones de tensión y corriente en los terminales. El modelo está basado en redes neuronales del tipo perceptrón multicapa (MLP). A partir de simulaciones en el dominio del tiempo de un sistema de potencia básico consistente en un generador conectado a un barraje infinito, se obtienen los registros de tensión y corriente, los cuales se utilizan como base de datos para entrenar y validar la red neuronal propuesta para la estimación del ángulo del rotor. Se encuentra que el modelo basado en redes neuronales se adapta muy bien al modelo clásico del generador, mostrando un error cuadrático medio inferior a 1´10-10. Los resultados obtenidos demuestran la validez del método de estimación y promueven su uso potencial para estudios de estabilidad del generador sincrónico.