HIF and COX-2 expression in triple negative breast cancer cells with hypoxia and 5-fluorouracil
Author(s) -
Noriko Mori,
Yelena Mironchik,
Flonné Wildes,
Sherry Y. Wu,
Kanami Mori-Yasumoto,
Balaji Krishnamachary,
Zaver M. Bhujwalla
Publication year - 2020
Publication title -
current cancer reports
Language(s) - English
Resource type - Journals
ISSN - 2661-3166
DOI - 10.25082/ccr.2020.01.005
Subject(s) - hypoxia (environmental) , viability assay , cancer cell , cell , biology , cancer research , hif1a , cell culture , medicine , chemistry , microbiology and biotechnology , cancer , angiogenesis , biochemistry , oxygen , genetics , organic chemistry
Our purpose was to understand the effects of normoxia or hypoxia on 5-fluorouracil (5-FU) treatment in triple negative breast cancer (TNBC) cells, and characterize the molecular changes in hypoxia inducible factors (HIFs) and cyclooxygenase-2 (COX-2) following treatment. Cell viability and protein levels of HIFs and COX-2 were determined after wild type and HIF silenced MDA-MB-231 cells, and wild type SUM-149 cells, were treated with 5-FU under normoxia or hypoxia. 5-FU reduced cell viability to the same levels irrespective of normoxia or hypoxia. HIF silenced MDA-MB-231 cells showed comparable changes in cell viability, supporting observations that hypoxia and the HIF pathways did not significantly influence cell viability reduction by 5-FU. Our data suggest that HIF-2aaccumulation may predispose cancer cells to cell death under hypoxia. SUM-149 cells that have higher COX-2 and HIF-2afollowing 24 h of hypoxia, were more sensitive to 96 h of hypoxia compared to MDA-MB-231 cells, and were more sensitive to 5-FU than MDA-MB-231 cells. COX-2 levels changed with hypoxia and with 5-FU treatment but patterns were different between the two cell lines. At 96 h, COX-2 increased in both untreated and 5-FU treated cells under hypoxia in MDA-MB-231 cells. In SUM-149 cells, only treatment with 5-FU increased COX-2 at 96 h of hypoxia. Cells that survive hypoxia and 5-FU treatment may exhibit a more aggressive phenotype. Our results support understanding interactions between HIF and COX-2 with chemotherapeutic agents under normoxia and hypoxia, and investigating the use of COX-2 inhibitors in these settings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom