z-logo
open-access-imgOpen Access
DIMENSI METRIK DARI GRAF SPINNER (C3 × P2) Kn UNTUK n = 1
Author(s) -
Citra Mayora,
Narwen Narwen,
Des Welyyanti
Publication year - 2019
Publication title -
jurnal matematika unand/jurnal matematika unand
Language(s) - Slovenian
Resource type - Journals
eISSN - 2721-9410
pISSN - 2303-291X
DOI - 10.25077/jmu.7.4.1-6.2018
Subject(s) - physics , combinatorics , mathematics
Misalkan u dan v adalah titik-titik dalam graf terhubung G. Jarak d(u, v) adalah panjang lintasan terpendek antara u dan v pada graf G. Bila diberikan himpunan terurut W = {w1, w2, w3, · · · , wk} dari titik-titik dalam graf terhubung G dan titik v ∈ V (G), representasi dari v terhadap W adalah k-vektor yang dapat ditulis dengan r(v|W) = (d(v, w1), d(v, w2), · · · , d(v, wk)). Jika r(v|W) untuk setiap titik v ∈ (G) berbeda, maka W disebut himpunan pembeda dari V (G). Himpunan pembeda dengan kardinalitas minimum disebut himpunan pembeda minimum dan kardinalitas dari basis metrik tersebut dinamakan dimensi metrik dari graf G dan dinotasikan dengan dim(G). Graf spinner adalah perkalian kartesius antara graf C3 dan graf P2 yang menghasilkan graf C3 × P2, kemudian graf C3 × P2 tersebut dikoronakan dengan graf komplemen Kn yaitu Kn, sehingga graf spinner tersebut dapat dinotasikan dengan (C3 ×P2)Kn. Pada paper ini akan dibahas dimensi metrik dari graf spinner (C3 × P2) Kn untuk n = 1.Kata Kunci: Dimensi metrik, Himpunan pembeda, Representasi, Hasilkali kartesius, Graf korona

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here